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A B S T R A C T

In this paper, we present a two-stage approach for characterizing the structure of Pinus sylvestris L. stands

in forests of central Spain. The first stage was to delimit forest stands using eCognition and a digital

canopy height model (DCHM) derived from lidar data. The polygons were then clustered (k-means

algorithm) into forest structure types based on the DCHM data within forest stands. Hypsographs of each

polygon and field data validated the separability of structure types. In the study area, 112 polygons of

Pinus sylvestris were segmented and classified into five forest structure types, ranging from high dense

forest canopy (850 trees ha�1 and Loreýs height of 17.4 m) to scarce tree coverage (60 tree ha�1 and

Loreýs height of 9.7 m). Our results indicate that the best variables for the definition and characterization

of forest structure in these forests are the median and standard deviation (S.D.), both derived from lidar

data. In these forest types, lidar median height and standard deviation (S.D.) varied from 15.8 m (S.D. of

5.6 m) to 2.6 m (S.D. of 4.5 m). The present approach could have an operational application in the

inventory procedure and forest management plans.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Forest structure can be defined by size, age, and species
distributions of living and dead vegetation, often with a focus on
the tree component (Spies and Franklin, 1991; Poage and
Tappeiner, 2005). Structure includes both vertical (e.g. number
of tree layers, understory vegetation) and horizontal features (e.g.
spatial pattern of trees, gaps) as well as species richness (Maltamo
et al., 2005). The conventional organisational level for forest
structure is the stand, which in unmanaged systems represent the
synthesis of ecological and environmental factors. Smith et al.
(1997) define the stand as a contiguous group of trees sufficiently
uniform in species composition, arrangement of age classes, site
quality, and condition, to be a distinguishable unit. In many
settings, forest stands are additionally defined by forestry activities
as operational units in forest planning and management (Nyland,
1996; Holmstrom, 2002; Leckie et al., 2003; Tiede et al., 2004;
Maltamo et al., 2005).

For example, stands are the basic survey units of most Spanish
forest management plans. In Spain, forest inventories follow a
traditional procedure. They are based on a systematic sampling
* Corresponding author. Tel.: +34 91 3367120; fax: +34 91 5439557.
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design of field plots with areas ranging from 300 to 1000 m2, in
which basic tree attributes dbh (diameter at breast height), height,
crown size, etc. are measured. Next, stand-level mean values of
biophysical variables such as dominant height, basal area, stem
number, volume and growth are calculated as average field plot
measurements. Finally, these stands are grouped in broader forest
structure types, based on stand-level characteristics, to be treated
as units for the purposes of management and forestry applications.

For management purposes, stand boundaries have traditionally
been delineated on aerial photographs by means of human pattern
recognition, and then interpreted photogrammetrically with the
support of local field knowledge and observation (Franklin, 2001).
Although this traditional approach is quite useful, it is also time
consuming, and the stand delineation process is highly subjective
(Skidmore, 1989; Franklin, 2001). However, the identification and
spatial delineation of clusters of similar trees in the forest stand
inventory improves the precision of stand-level growth and yield
predictions and stand-level inventories (Magnussen et al., 2006).

Consequently, remote sensing, via image segmentation and
statistical modelling, has been advanced to assist in forest surveys.
Leckie et al. (2003) suggest that semi-automated, computer-
assisted interpretation of digital imagery offers a possible method
of acquiring some or all of the desired information, reducing time
and costs, and increasing consistency. This is accomplished with
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the use of different digital imagery and, to a lesser extent, with
lidar (light detection and ranging) data (Diedershagen et al., 2004;
Tiede et al., 2004; Magnussen et al., 2006).

Most forestry lidar studies have concentrated on plot-level or
stand-level estimation of such attributes as mean height, volume
or basal area, canopy closure and others (Jensen et al., 2006; van
Aardt et al., 2006; Wallerman and Holmgren, 2007) with a focus on
reducing field work effort and increasing accuracy. Naesset (2004)
estimated principal stand characteristics with higher precision
using lidar data than applying conventional methods in forest
inventory in areas with terrain slopes of up to 308–358, and no
mixed forest canopy formations. Naesset et al. (2004) indicate that
area-based approaches to estimate forest stand variables from
laser scanner data have matured and are now implemented in
operational projects in Scandinavian countries.

Lidar data have also highlighted the relevance of the canopy
height as an attribute for characterising forest structure. Variation
in tree height (e.g., standard deviation of height) is primarily
focused on characterizing the vertical structure of a forest canopy
(Zenner, 2000; McElhinny et al., 2005). Lefsky et al. (1999), Means
et al. (1999) Harding et al. (2001) and Parker and Russ (2004)
developed canopy height profiles from lidar data to synthesize the
three-dimensional distribution of forest canopies. Zimble et al.
(2003) used lidar-derived tree height variances to distinguish
between single-story and multi-story classes. Parker and Russ
(2004) used the standard deviation of lidar-derived height to
describe the topography of the outer canopy.

According to Lefsky et al. (2005), mean height and height
variability derived from lidar data are strongly related to canopy
indices related to stand structure. These authors work in plots with
young, mature and old-growth formations, in largely closed
canopy stands which by definition are not heterogeneous in terms
Fig. 1. Study site. Fuenfrı́a Valley in the village
of percentage of forest cover. However, in horizontally hetero-
geneous forests (i.e., forests with variable amounts of tree cover),
the use of mean height poses problems for the classification of
different forest stands (Pascual, 2006; Pascual et al., 2006). These
authors therefore suggest analyzing statistics other than mean
height to obtain a better classification of these heterogeneous
forest stands.

In this context, this study focuses on lidar data to study forest
structure in order to be of practical application in forest manage-
ment. The general objective was to characterize the forest structure
based on lidar height distributions, supplemented by field data to
support the lidar interpretations. This involved three secondary
objectives. The first was to define forest stand boundaries and
cluster these stands into forest structure types based on the lidar
height distributions. The second was to select a few lidar height
summaries to make the present approach more effective. The third
was to propose a methodological approach that would ultimately
reduce the need for expensive fieldwork and which would be easy
to implement in operational forest management.

We therefore decided to work with the lidar derived digital
canopy height model (DCHM) directly provided by commercial
firms, in order to establish whether it was possible to use the lidar
processed information to implement a feasible methodological
approach in areas that fulfil the requirements proposed by Naesset
(2004).

2. Materials and methods

2.1. Study site

A 127.10 ha (1293 m � 983 m) area on the western slopes of the
Fuenfrı́a Valley (408450N, 4850W) in central Spain was selected as
of Cercedilla, northwest of Madrid (Spain).
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the study area. The Fuenfrı́a Valley is located in the northwest
portion of the Madrid region (Fig. 1). The predominant forest is
Scots pine (Pinus sylvestris L.) with abundant shrubs (Cytisus

scoparious (L.) Link., C. oromediterraneus Rivas Mart. et al., Genista

florida L.) in some areas. There are small pastures on the lower
slopes of the hillside. In the north sector of the study site there is an
extensive rocky area. The site has a mean annual temperature of
9.4 8C and precipitation averages 1180 mm/year. Elevations range
between 1310 and 1790 m above sea level, with slopes of between
20% and 45%. The general aspect of the study site is east.

2.2. Lidar data and pre-processing

A small-footprint lidar dataset was acquired by Toposys GmbH
over the study area in August, 2002. The Toposys II lidar system
recorded first and last returns with a footprint diameter of 0.95 m.
Average point density was 5 points m�2. The raw data (x, y, and z

coordinates) was processed into two digital elevation models by
TopoSys using as interpolation algorithm a special local adaptive
median filter developed by the data provider. The digital surface
model (DSM) was processed using the first pulse reflections, and
the digital terrain model (DTM) was constructed using the last
returns. Filtering algorithms were used to identify canopy and
ground surface returns for an output pixel resolution of 1 m
horizontal and 0.1 m vertical resolution. According to Toposys
calculations, the DSM and DTM, horizontal positional accuracy was
0.5 m and vertical accuracy was 0.15 m.

To obtain a DCHM, the DTM was subtracted from the DSM. Both
the DTM and DCHM were validated before use by means of land
surveying with total station in 19 points and ground-based height
measurements of 102 trees. The vertical accuracies, (Root Mean
Square Error, R.M.S.E.s) obtained for the DTM in open areas and for
the DCHM under forest canopy were 0.30 and 1.3 m, respectively.
These accuracies were acceptable for this study, and were in
agreement with previous studies. For example, Clark et al. (2004)
reported R.M.S.E.s for DTMs ranging from 0.06 to 0.61 m, and for
DCHMs ranging from 0.23 to 2.41 m in tropical landscapes.

2.3. Mapping forest structure

The process of mapping forest structure for this study involved
several steps. These include delineating and classifying polygons
and defining the classified polygons with DCHM hypsographs and
additional field data.

2.3.1. Polygon delineation and classification

The aim of this step was to use an object-oriented segmentation
approach to delineate forest stand boundaries (polygons) and
classify them in the DCHM, based on lidar height distributions.

Polygons were delineated from the lidar-derived DCHM using
eCognition 4.0 software (Definiens Imaging GmbH, Munich 2004).
This is an object-based image analysis package which applies a
spatial clustering technique (Haralick and Shapiro, 1985). This
algorithm identifies geographical features using the scale and
homogeneity parameters, which were obtained in this study from
the lidar DCHM. According to Suarez et al. (2005) scale relates to the
minimum size required to identify a particular object, which
depends on the resolution of the images. Homogeneity is described
by a mutually exclusive interaction between colour and shape.

Colour refers to the spectral response of the objects (lidar height in
this study), whereas shape is divided into two equally exclusive
properties: smoothness and compactness which respectively define
the boundaries of the polygons (objects) and their transition to others.

Three consecutive segmentations were applied to the lidar
DCHM. A first segmentation with a scale parameter of 30 was
derived, with 0.5 and 0.3 as the shape and smoothness parameters,
respectively. These objects were later aggregated into the levels of
higher hierarchical scales 50 and 70 by using the same smoothness
parameter (0.3), with 0.4 as the shape values for the second and
third segmentation. These values were demonstrated as the most
feasible for the assessment of objects representing forest stands
with a reasonably homogeneous structural typology.

A total of 146 polygons were segmented, 112 containing Scots
pines, and 34 consisting of non-forest components such as pasture,
shrubs, rocks and bare soil. The 112 forest polygons were grouped
into five structure types by a k-means cluster analysis. Separate
cluster analyses were performed on two different combinations of
variables derived from summaries of the fundamental DCHM data
within each polygon: (1) mean and standard deviation (S.D.) of
height (CombV1), and (2) median and S.D. of height (CombV2). In
previous work (Garcia-Abril et al., 2006; Pascual, 2006), we have
studied several indices and variables derived from the lidar-
DCHM: relative gap surface, landscape ecology metrics (i.e.
Shannon index, fractal dimension, contagion index) voxels and
texture, but these were rejected as they did not contribute to
cluster discrimination. The coefficient of variation (CV) (i.e.
standard deviation divided by the mean) was not considered as
an entry variable as it depends on the rest. According to Hair et al.
(1995) there is no objective procedure for establishing the number
of clusters. These authors suggest obtaining various cluster
solutions and deciding based on a priori criteria, experience or
theoretical foundations. In this study, the decision to base the
analysis on five structure types was an iterative process aided by
the expert opinion of forest management personnel in the area.

Individual polygons were assigned to the different clusters
using the sequential threshold method, where distances in cluster
seeds were sorted, and observations of the distances between them
taken at constant intervals. Analysis of variance was used to test
the statistical significance of the forest structure types derived
from the cluster analysis. Euclidean distances between cluster
centroids were also used as an indicator of the proximity of cluster
groupings (Hair et al., 1995; Levia, 2003)

2.3.2. Cluster hypsographs and field-based description

The two sets of polygon assignment to clusters were evaluated
for their relative value in distinguishing among the five forest
structure types. As no tests exist to measure the weight of the
variables used to define the clusters in the cluster statistics
technique (Hair et al., 1995), we decided to compare the
classifications using hypsographs. Hypsographs are the cumulative
distribution of canopy heights as a function of proportional area
within each polygon. Such a graph has been used in the description
of landform surfaces and their development (Strahler, 1952).
Hypsographs are related to canopy height profiles, and are both
powerful tools for synthesizing the three-dimensional distribution
of forest canopies, and have been widely used to analyze stand
structure, either derived from lidar data (Lefsky et al., 1999; Harding
et al., 2001; Maltamo et al., 2005) or from the DCHM (Parker and
Russ, 2004). Hypsographs of each forest polygon were derived from
distributions of heights contained within the lidar DCHM.

Further analysis involved summarizing the hypsographs into
percentiles; i.e., heights at which 10%, 25%, 50%, 75% and 90% of the
polygon surface area occurs within each polygon (H10%, H25%, H50%,
H75% and H90%, respectively). ANOVA and Kruskall–Wallis tests
with Tukeýs method for post hoc analysis were used to test
whether indices describing canopy height distributions (H10%,
H25%, H50%, H75% and H90%) varied significantly among forest
structure types for both variable combinations (CombV1 or
CombV2). These results were useful for determining which
variable combination provided better separability of structure



Fig. 2. (a) The 112 object-based segmented polygons using eCognition. (b) Results of the cluster analysis (k-means). Numbers inside the polygons indicate the forest structure

type (1, 2, 3, 4 or 5) to which each polygon has been ascribed by cluster analysis. Polygons without numbers correspond to non-forest stands.
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Table 1
Descriptive statistics (mean and standard deviation) of entry variables in the two cluster combinations (CombV1 and CombV2)

Lidar height variables Forest type 1 Forest type 2 Forest type 3 Forest type 4 Forest type 5

Comb V1 Mean height 14.3 (1.1) 11.4 (0.8) 9.1 (0.7) 6.7 (0.7) 3.8 (0.9)

S.D.1 height 5.6 (0.9) 4.6 (0.9) 5.5 (0.7) 5.1 (0.7) 4.1 (0.7)

No. of members 27 26 28 23 8

Comb V2 Median height 15.8 (0.8) 13.0 (0.8) 10.3 (0.7) 7.3 (0.9) 2.6 (1.4)

S.D.1 height 5.6 (1.0) 4.9 (1.0) 5.0 (1.0) 5.1 (0.7) 4.5 (1.1)

No. of members 22 23 29 25 13

S.D.1 = standard deviation. Parenthetical values are standard deviations of mean, median and S.D.1 of height for polygons in each forest type.

Table 2
Euclidean distance among cluster (forest types) centres for CombV1 and CombV2

CombV1 CombV2

1* 2* 3* 4* 1* 2* 3* 4*

2* 2.17 – – – 2* 2.08 – – –

3* 3.72 1.80 – – 3* 3.97 1.93 – –

4* 5.41 3.35 1.71 – 4* 6.02 3.99 2.06 –

5* 7.55 5.44 3.88 2.17 5* 9.42 7.37 5.45 3.41

1*, 2*, 3*, 4*, 5* stand for forest types 1, 2, 3, 4 and 5, respectively.
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types. All statistical analyses were done with STATISTICA v. 6.1
software (StatSoft, Inc., Tulsa, OK, 2004).

We collected field data to provide an independent assessment
of the forest structure types. Ten plots were established, consisting
of two different sets; one with two plots of 2400 m2 each and
another with 8 plots of 1260 m2. Two field plots were located in
each forest type. They were inventoried during July 2003. The DBH
(diameter at breast height) and height of all trees on each plot were
measured, the latter with a Vertex III hypsometer. These data were
used to describe the five structure types. Plot centres were geo-
referenced using Differential Global Positioning System (GPS). A
Trimble Geoexplorer 3 receiver observing the C/A-code and carrier
phase (L1) was used. Collection of data lasted about 40–60 min for
each plot, with a 5-s logging rate. Post-processing was computed
using GPS Pathfinder 2.70 software. Correction data were down-
loaded from the Crustal Dynamics Data Information System
(CDDIS) using a base station 30 km away. According to the
positional errors reported by the software, the horizontal accuracy
of the plot coordinates ranged from 0.6 to 2.8 m.

3. Results

3.1. Polygon segmentation and classification

Lidar data segmentation with eCognition provided 112
polygons (Fig. 2a) varying in size from 0.138 to 3.982 ha, with
an average area of 0.926 ha (S.D. of 0.666 ha). The clustering of
polygons into five forest structure types based on either mean
(CombV1) or median (CombV2) and standard deviation of DCHM
within-polygon heights (Table 1), revealed that both combina-
tions were able to separate all 5 types (analysis of variance F-ratios
between cluster centres: (i) CombV1 (mean F = 376.58; p < 0.001
and S.D. F = 8.58; p < 0.001), (ii) CombV2 (median F = 526.91;
Table 3a
Tukey HSD test significant differences ( p < 0.05): hypsograph indices, CombV1

Type 1 Type 2

Type 2 H25%, H50%, H75%, H90%

Type 3 H10%, H25%, H50%, H75%, H90% H10%, H25%, H50%, H

Type 4 H10%, H25%, H50%, H75%, H90% H10%, H25%, H50%, H

Type 5 H10%, H25%, H50%, H75%, H90% H10%, H25%, H50%, H
p < 0.001 and S.D. F = 3.67; p < 0.001)), however, CombV2 was
slightly better in doing so (Table 2).

3.2. Hypsographs

The hypsographs and related height histograms reveal mean-
ingful differences among the five forest structure types (Fig. 3).
This is confirmed by analysis of the hypsograph percentiles
(Tables 3a and 3b). Both percentile indices for CombV2 and
CombV1 were able to discriminate all structure types, whereas for
CombV2, only the H10% percentile was not statistically significant
for distinguishing between structure types 1 and 2 and types 4 and
5. This result, together with Euclidean distance separations among
cluster centroids for CombV2 (Table 2), suggests that median and
standard deviation of the DCHM are better suited to distinguishing
among the five P. sylvestris structure types defined in this study.

3.3. Field verification of structural differences

The data collected from the 10 plots in order to describe the five
forest structure types in the study site, independent of the lidar
data, reveal meaningful differences among types.

Type 1: Uneven-aged forest (multilayered canopy) with very high

crown cover. These forest stands are located in the lowest part of
the hillside, between 1330 and 1470 m in the study area (Fig. 2b).
The slope ranges from 20% to 30% and the general aspect is
northeast and southeast. This forest type corresponds to a
multilayered, uneven-aged Scots pine formation (Fig. 4a). Crown
cover ranges between 75% and 85%, and density is over
850 trees ha�1. This forest type includes the tallest trees in the
study area (Table 4 and Fig. 4a).

Type 2: Multi-diameter forest with high crown cover. These
polygons are distributed between 1310 and 1600 m in the southern
Type 3 Type 4

75%

75%, H90% H25%, H50%, H75%, H90%

75%, H90% H25%, H50%, H75%, H90% H50%, H75%, H90%



Fig. 3. This figure is based on the 112 segmented polygons. Hypsographs of DCHM data for each forest stand polygon, by forest type. Numbers represent the identification code

for each polygon (left); DCHM lidar height histograms (right).
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Fig. 4. Field measurements for the 10 plots used to describe forest structure types. Tree height distribution (left); diameter class distribution (right). Loreýs height is a mean

tree height weighted by the normal section of trees.
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Table 3b
Tukey HSD test significant differences ( p < 0.05): hypsograph indices, CombV2

Type 1 Type 2 Type 3 Type 4

Type 2 H25%, H50%, H75%, H90%

Type 3 H10%, H25%, H50%, H75%, H90% H10%, H25%, H50%, H75%H90%

Type 4 H10%, H25%, H50%, H75%, H90% H10%, H25%, H50%, H75%, H90% H10%, H25%, H50%, H75%, H90%

Type 5 H10%, H25%, H50%, H75%, H90% H10%, H25%, H50%, H75%, H90% H10%, H25%, H50%, H75%, H90% H25%, H50%, H75%, H90%

Table 4
Forest attributes from 10 field plot measurements in the five forest structure types

Forest type Mean height (m) S.D. of height (m) Loreýs height (m) Basal area (m2 ha�1) Density (trees ha�1)

1 9.9 6.2 17.4 39.9 850

2 14.7 4.6 17.3 40.7 640

3 11.4 5.4 15.4 35.3 378

4 11.4 4.1 13.1 26.2 175

5 8.7 3.5 9.7 6.6 76

Loreýs height is a mean tree height weighted by the normal section of trees.

C. Pascual et al. / Forest Ecology and Management 255 (2008) 3677–36853684
portion of the study area with some discontinuous polygons in the
north sector (Fig. 2b). The general aspect is east, and slopes range
between 20% and 50%, with a mean of over 35%. This forest type can
be described as having a multi-diameter distribution and a two-
story vertical distribution (Fig. 4b). Canopy cover is over 65%–70%
and density is 640 trees ha�1. Trees included in this forest type have
slightly lower height and diameter than in the previous one (Table 4)
(Fig. 3b).

Type 3: Multi-diameter forest with medium crown cover. This type
occurs discontinuously across the elevation gradient of the study
area (1310–1790 m) (Fig. 2b). Predominant aspect is east. The
mean slope is 40%, crown cover is over 55% and density is
178 trees ha�1. This type of forest has a multi-diameter distribu-
tion, but is less dense than type 2 above (Fig. 4c). In some polygons
the pines form clumps of trees.

Type 4: Even-aged forest (single-story) with low crown cover.
These stands are distributed throughout the higher elevations of
the study area (1500–1790 m), which has a predominantly eastern
orientation. Slopes range between 40% and 55%. The distribution of
diameter classes is close to an even-aged formation and height
distribution represents a single-story condition (Fig. 4d). This
forest type includes mature trees of greater diameter but with a
slightly lower height and larger crown diameters than other types
(Fig. 4d). Crown cover is relatively low, and is generally less than
40% and density is 175 trees ha�1. In this type a subtype was
identified, consisting of a two-layered structure with emergent
trees over a regenerating stand.

Type 5: Zones with scarce tree coverage. This type consists of
dense coverage of shrubs (Rosa spp., Adenocarpus hispanicus (Lam.)
DC., Cytisus scoparius (L.) Link, Pteridium aquilinum (L.) Kuhn and G.

florida L.) under isolated pine trees. Crown cover is between 10%
and 15%, with very low density (75 trees ha�1) (Fig. 4e). These
polygons are located at the highest elevations (1550–1750 m),
with a mean slope of up to 40% and a predominantly northern or
eastern aspect.

4. Discussion

Modern remote sensing tools, lidar data and object-oriented
segmentation approaches are making possible to automate many
of the processes involved in forest structure stand delineation. In
this study we demonstrate the utility of airborne lidar data for this
purpose, as lidar directly provides forest canopy height that has
traditionally been estimated using a combination of aerial photo
interpretation and photogrammetry.

The present study proposes a three-step methodological
approach for forest structure characterization. The first step is
the segmentation of the laser scanner DCHM in forest stands; the
second is to cluster these stands into forest structure types based
on the lidar height summaries; and the final step is to validate the
procedure with field data and hypsographs.

Some authors propose automated forest stand segmentation
procedures in homogeneous forest formations (Diedershagen
et al., 2004). Our results show the utility of the combination of
eCognition algorithms with knowledge of the study area in order to
obtain an automated segmentation of forest stands in horizontally
heterogeneous forest formations.

Lidar DCHMs provide a vast amount of information on forest
structure stands that can be used in a variety of ways to cluster the
stands into forest structure types. Pascual (2006) and Garcia-Abril
et al. (2006) carried out several cluster trials considering multiple
combinations of entry variables derived from a binned and non-
binned lidar DCHM: mean height, median, S.D., relative gap surface
area (i.e. number of grid of zero height divided by total number of
polygon grids), mean and S.D. of texture in a 5 � 5 window, and
different landscape indices (fractal dimension, Shannon index,
contagion index and others). These authors have proved that most
of these variables were redundant in the study area.

Our results showed that the mean and standard deviation of
height provided valuable characterization of the forest structure
for types 1 and 2, which have height distributions which tend to be
closer to normality (Fig. 3a and b). This result is in accordance with
(Zimble et al., 2003; Lefsky et al., 2005). However the median and
standard deviation were better at distinguishing structure types 3,
4 and 5, which had more pronounced non-normal height
distributions (Fig. 3c–e). This is because, for such distributions,
the most representative central value is the median (Quinn and
Keough, 2002). Of course, for normal distributions, mean and
median are nearly identical. We therefore conclude that, in general,
median height derived from DCHMs is better related to structure in
forests with heterogeneous height distributions.

In conclusion, our results show that median and S.D. of height
derived from lidar DCHM were useful for distinguishing among
horizontally heterogeneous forest structure types based on cluster
analysis. They met the requirements for this present approach, in
that they were flexible and easy to implement in operational
management plans for Spanish forests. However, the original lidar
point cloud might contain additional information of special
interest in horizontally heterogeneous forests that could be
analyzed in future research.

Finally, in order to apply the results of the present methodo-
logical approach in forest inventories, we considered it especially
useful to validate this approach to creating a model of forest
structure types with field data measurements. Our proposal for
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validation based on hypsographs and percentiles allow a quick
validation.
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Appendix A. Abbreviations
DSM
 Digital surface model
DTM
 Digital terrain model
DCHM
 Digital canopy height model
CombV1
 Mean and standard deviation of lidar height as
combination of entry variables for cluster analysis
CombV2
 Median and standard deviation of lidar height as
combination of entry variables for cluster analysis
S.D.
 Standard deviation
CV
 Coefficient of variation
R.M.S.E.
 Root mean square error
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